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1 Lattices

This document provides a gentle and very short introduction to Lattices. A laftjce V) consists
of a setl and two operators. : L. x L. — L, calledmeetandV : L x L — L, calledjoin, that
satisfy the following for alls, b, ¢ € L:

aVa=a alNa=a Q)
aVb=bVa aNb=DbANa (2)
(avb)Ve=aV(bVec) (anb)ANc=aA (bAc) (3)
(avb)ANec=(aNc)V (bAc) (anb)Ve=(aVec)N(bVe) 4)
(aVb)Na=a (anb)Va=a (5)

As a consequence of the definition above we can derive a number of properties. We can define a
“partial order law” by

a<biffavb=1b (6)
We can easily show that< b iff a A b = a. Supposer < bthenb=a Vv band
aNb=aAN(aVb)=(aVa)A(aVb) =aV(aAb)=a (7)

shows that: A b = a, which shows one side of th. | will leave it to you to show that it Ab = a
then we can show thatV b = b and hence that < b (the other side of théf.

It is fairly straight forward to show that i < b andb < a thena = b.

The lattice always contains a unigleastelement (often called) which is themeetof all the
elements of the latticed = A ., a In addition the lattice always contains a unigumaximal



element (often call) which is thejoin of all the elements of the latticel: = \/,_; a. Note that
for all « € L we have:
0<a<l1 (8)

Finally, the lattice contains the notion l&fast upper boundlub) andgreatest lower boungglb).
Supposer, b € L. Then there is a (unique) smallest elemerd L such thatt < v andb < u. In
fact we can show that = a Vv b. Similarly,l = a A b is the largest element in the lattice such that
[ <gand] <b.

Exersize: Show that the set of subsets of theAet {1,2,3,4,5,6} forms a lattice undeset
intersectionandset union Determine thé and1 of this lattice.

2 Some Examples

2.1 A Well-Ordered Lattice

Supposd. = {U,C, S, TS} suchthal/ < C' < S < TS. If a,b € L we will definemeetandjoin
to be

a A'b=min(a,b) 9)
a Vb= max(a,b) (20)

From this it is easy to see th&t A T'S = U andU Vv T'S = T'S. The definitions clearly satisfy
equationl] {5 It is clear why this is called a “well ordered” lattice.

2.2 A Lattice Based on Subsets

Supposd.’ = {a, b, 0, g} is a set of 4 elements. SuppoBeL’) is thepower sefset of all subsets
of) L. Suppose we have for all elementsB € P(L'), (A, B C L')

AANB=ANB (11)
AVB=AUB (12)

wheren is set intersection and is set union. Then it is easy to show that this forms a lattice.



2.3 Product Lattice

Suppose we construct the structgfex L', A, V) where for all(ly,1}), (l2, 15 € L x L', we have:

(11, 1) A (12, 15) = (I N, 13N 1) (13)
(ll, lll) V (lg, ZIQ) - (ll V lg, lll U ZIQ) (14)

where the operations are done “component wise.”

It is easy to show that if the component operations form a lattice then the “product” will also form
a lattice.

3 Showing equivalence of Lattice Definitions

In this section we show that there are several ways to define a lattice. We described one above,
using thgoin andmeetoperators. Below we show an equivalent definition.

To do this, we first define poset(partially ordered set). Suppose we hé&ge<) whereS is some
set and< satisfies:

VseS:s<s (reflexive)
Vs,teS:s<tandt<s=s=t (antisymmetry) (15)
Vs, t,u € S:s<tandt <u= s <u (transitivity)

Some examples of partial orders include

1. The set of integers (positive and negative) with the natural integer comparison ogerator
2. The set of positive integers with the comparison operator defingdn < m divideSnE]

3. The set of subsets (the power set) of a$etith C as the comparison operator.

If, for every s, t € S we have eithes < t ort < s then the set isotally ordered

Suppose there exists an element S such thatVs € S : a < s. If such an elemeni exists,
it is unique (i.e. there is only one of them). To show this, we suppose thatiledse satisfies
Vs € S :b < s. Thena < b sincea is a least element, and likewise sinces a least element

!Divideshere means division without remainder. It is obvious that the requirements in eqliations 15 are satisfied.
If we included both the positive and negative integers, then one of the conditions would not be satisfied. You should
figure out which one.



b < a, but then by antisymmetry, = 0. We will denote such an element, if it exists, as thef
the lattice.

In the Exampl¢ [L above, there is fioln Examplg P the numben” satisfies the) property, while
in Examplg B the empty setsatisfies thé property.

Using exactly dual arguements, we can deduce that if there is a largest elesumht that for all
s € S:s <z thenzis uniqgue. We call such an elemernit)if it exists. Which of the examples
above have a maximal element and which déh't?

Supposé S, <) is a partially ordered set and C S. An “upper bound of the setX is an element

a € Ssuchthatvz € X : x < a. For an arbitraryposetupper bounds may or may not exist. The
lub (least upper bounydof the setX, writtenlub(X), is an upper bound oX that is< every other
upper bound ofX. Similarly we can define thglb (greatest lower boundof a setX.

Using the same argument we used for showing ¢hiatunique if it exists, we can show the both
the glb(X) and thelub(X ) are unique if they exist.

Suppose thatS, <) is a partially ordered set such that every pair of elemenisludis aglb and a
lub. We will show thatS' is then a lattice. For all, ¢t € S, we define

sAt=glb({s,t}) = glb(s,t) (16)
sVt =Ilub({s,t}) = lub(s,t) (17)

To help up along, we need a couple of lemmas. First we need to show thattfar € S,
sVt =Ilub(s,t) < lub(s,t,u). We know thats < lub(s,t,u) andt < lub(s,t,u) solub(s,t,u) is
an upper bound of bothandt. Hence, by definition ofub, we havelub(s,t) < lub(s,t,u).

We also need to show thatif < ¢ thenlub(s,u) < lub(t,u). To show this, note that < ¢ <
lub(t,u) andu < lub(t,u) solub(t,u) is an upper bound ofs,u}. Hence, by definition ofub,
lub(s,u) < lub(t,u).

We note thatub(s,t) = lub(t, s). To show associativity dfub need to show that

lub({lub({s,t}),u}) = lub({s, lub({t,u})}).

One way to do this is to show that both sides are equialitd s, ¢, u}). Sincelub({lub({s,t}),u})
is an upper bound ofs, t,u}, we havelub({s,t,u}) < lub({lub({s,t}),u}). Using our first
lemma above, we havieb(s,t) < lub(s,t,u) andu < lub(s,t,u), SOlub(s,t,u) is an upper
bound for{lub(s,t),u}, i.e we havdub(lub(s,t),u) < lub(s,t,u).

This completes the proof of associativity.

2Note that having a minimabj element does not necessarily guarantee the existence of a maximal element.
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